Abstract

In this investigation, the general formalism for the field equations governing the dynamic response of fluid-saturated porous media is analyzed and employed for the study of transient wave motion. The two constituents are assumed to be incompressible. A one-dimensional analytical solution is derived by means of Laplace transform technique which, as a result of the incompressibility constraint, exhibits only one independent dilatational wave propagating in the solid and the fluid phases, respectively. The fluid-saturated porous material is supplied with characteristics similar to those occuring in viscoelastic solids. This work can provide the further understanding of the characteristics of wave propagation in porous materials and may be taken for a quantitative comparision to various numerical solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.