Abstract

Given a set of point correspondences in an uncalibrated image pair, we can estimate the fundamental matrix, which can be used in calculating several geometric properties of the images. Among the several existing estimation methods, nonlinear methods can yield accurate results if an approximation to the true solution is given, whereas linear methods are inaccurate but no prior knowledge about the solution is required. Usually a linear method is employed to initialize a nonlinear method, but this sometimes results in failure when the linear approximation is far from the true solution. We herein describe an alternative, or complementary, method for the initialization. The proposed method minimizes the algebraic error, making sure that the results have the rank-2 property, which is neglected in the conventional linear method. Although an approximation is still required in order to obtain a feasible algorithm, the method still outperforms the conventional linear 8-point method, and is even comparable to Sampson error minimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.