Abstract

We study a simple microscopic model for the one-dimensional stochastic motion of a (non-)relativistic Brownian particle, embedded into a heat bath consisting of (non-)relativistic particles. The stationary momentum distributions are identified self-consistently (for both Brownian and heat bath particles) by means of two coupled integral criteria. The latter follow directly from the kinematic conservation laws for the microscopic collision processes, provided one additionally assumes probabilistic independence of the initial momenta. It is shown that, in the non-relativistic case, the integral criteria do correctly identify the Maxwellian momentum distributions as stationary (invariant) solutions. Subsequently, we apply the same criteria to the relativistic case. Surprisingly, we find here that the stationary momentum distributions differ slightly from the standard Jüttner distribution by an additional prefactor proportional to the inverse relativistic kinetic energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.