Abstract
In the last decades, helicopter-borne electromagnetic (HEM) method became a focus of interest in the fields of mineral exploration, geological mapping, groundwater resource investigation and environmental monitoring. As a standard approach, researchers use 1-D inversion of the acquired HEM data to recover the conductivity/resistivity-depth models. Since the relation between HEM data and model parameters is strongly nonlinear, in the case of dealing with simple 1-D models which the number of model parameters is less than the number of measured data, i.e. overdetermined system, implementation of regularized nonlinear least square methods is a common approach to recover the model parameters. Among the least square methods, Marquardt-Levenberg acts as an integrated optimization algorithm which comprises both the gradient-descent and Gauss-Newton strategies. This algorithm resolves the deficiencies of the slow convergence of gradient-descent and the singularity of the sparse matrix in the Gauss-Newton. Furthermore, involving the line search strategy improves the objective function to ensure that the algorithm converges to the global optimum point. In this research work, we implemented the Marquardt-Levenberg including the backtracking-Armijo line search for HEM data inverse modeling. Moreover, we used a linear filter of the Fast Hankel Transform (FHT) to figure out the forward operator for data simulation. Developing our algorithm via programming using MATLAB, we successfully obtained a resistivity model of layered earth. We employed the algorithm to recover a resistivity model from the HEM data acquired above the Alut region located at the northwest of Iran where is characterized by shear zone structure consisting of chlorite schist, Phyllite/Phyllonite, metamorphosed limestone and dolomite, mylonite and ultra-mylonite rock units. As a result, in accordance with the geological map the study area, we have successfully derived a resistivity-depth section of the subsurface along the HEM flight line and detected plausible shear zone and mylonitic granite as the favorite targets for the orogenic gold mineralization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.