Abstract

Covalent organic frameworks (COFs) with redox-active moieties are potential capacitive energy storage materials. However, their performance is limited by their poor electrical conductivity and sluggish ion diffusion in their nanopores. Herein, we report coaxial one-dimensional van der Waals heterostructures (vdWHs) comprised of a carbon nanotube (CNT) core and a pyrene–pyridine COF shell synthesized by an in situ wrapping method. The coaxial structure allows efficient electronic interaction between the CNT core and COF shell and improves the electrical conductivity significantly. It also improves electrolyte ion accesses to redox-active pyridine groups in the COF, resulting in excellent capacitive energy storage performance with a high specific capacitance of ∼360 F g−1, an excellent rate capability of ∼80%, and a good stability of 92% capacitance retention after 20 000 charge/discharge cycles. Our strategy opens the door to create other multi-dimensional vdWHs for various potential applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call