Abstract

Fluorescent lateral flow immunoassay (LFA) systems are versatile tools for sensitive and quantitative detection of disease markers at the point of care. However, traditional fluorescent nanoparticle-based lateral flow immunoassays are not visible under room light, necessitate an additional fluorescent reader, and lack flexibility for different application scenarios. Herein, we report a dual-readout LFA system for the rapid and sensitive detection of C-reactive protein (CRP) in clinical samples. The system relied on the aggregation-induced emission nanobeads (AIENBs) encapsulated with red AIE luminogen, which possesses both highly fluorescent and colorimetric properties. The AIENB-based LFA in the naked-eye mode was able to qualitatively detect CRP levels as low as 8.0 mg/L, while in the fluorescent mode, it was able to quantitatively measure high-sensitivity CRP (hs-CRP) with a limit of detection of 0.16 mg/L. The AIENB-based LFA system also showed a good correlation with the clinically used immunoturbidimetric method for CRP and hs-CRP detection in human plasma. This dual-modal AIENB-based LFA system offers the convenience of colorimetric testing and highly sensitive and quantitative detection of disease biomarkers and medical diagnostics in various scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call