Abstract

This paper proposes a novel method for one-class classification by using support vector machine (SVM) based on a divide-and-conquer strategy. An s% winner-take-all autoencoder is applied to realize a sophisticated partitioning which divides the dataset into many clusters. For each cluster, data points are separated from the origin in the feature space like a traditional one-class SVM (OCSVM). By designing a gated linear network, and generating the gate signal from the autoencoder, the proposed OCSVM is implemented in an exact same way as a standard OCSVM with a quasi-linear kernel composed by using a base kernel with the gate signals. Comparing to a traditional OCSVM, the proposed quasi-linear OCSVM is expected to capture a more compact region in the input space. The compact region will decrease the probability of outlier objects falling inside the domain of classifier, which give a better performance. The proposed quasi-linear OCSVM method is applied to different real-world datasets, and simulation results confirm the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.