Abstract

The main aim of the Spectrum Sensing (SS) in a Cognitive Radio system is to distinguish between the binary hypotheses H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> : Primary User (PU) is absent and H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> : PU is active. In this paper, Machine Learning (ML)-based hybrid Spectrum Sensing (SS) scheme is proposed. The scattering of the Test Statistics (TSs) of two detectors is used in the learning and prediction phases. As the SS decision is binary, the proposed scheme requires the learning of only the boundaries of H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> -class in order to make a decision on the PU status: active or idle. Thus, a set of data generated under H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> hypothesis is used to train the detection system. Accordingly, unlike the existing ML-based schemes of the literature, no PU statistical parameters are required. In order to discriminate between H0-class and elsewhere, we used a one-class classification approach that is inspired by the Isolation Forest algorithm. Extensive simulations are done in order to investigate the efficiency of such hybrid SS and the impact of the novelty detection model parameters on the detection performance. Indeed, these simulations corroborate the efficiency of the proposed one-class learning of the hybrid SS system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.