Abstract

We discuss recent developments in the “one-body” dissipation theory described in Błocki et al. [ Ann. Phys. (N.Y.) 113 (1978), 330]. The principal new result is the derivation of the functional form of the dissipation expression (the Rayleigh Dissipation Function) for a finite idealized nucleus with a diffuse surface, in the form of an expansion in powers of the dimensionless ratio of the surface diffuseness to the size, R, of the system. The leading term in such an expansion is a surface contribution, of relative order R 2, in the form of the “Wall Formula” of Błocki et al. The next is a curvature correction of order R. At the next level ( R 0) there are two higher order curvature corrections and a correction for the presence of gradients in the normal velocity field specifying the motion of the surface. For simple models of the nuclear surface profile we work out analytically the coefficients in the curvature and velocity-gradient correction terms. We compare the one-body dissipation theory formulated in this way with recent linear-response and Time-Dependent Hartree-Fock treatments of the nuclear problem. The principal theme that emerges from this study is the close analogy between the problem of the nuclear macroscopic dissipation function and the problem of the nuclear macroscopic potential energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.