Abstract
Pattern classifiers have been widely used in adversarial settings like spam and malware detection, although they have not been originally designed to cope with intelligent attackers that manipulate data at test time to evade detection. While a number of adversary-aware learning algorithms have been proposed, they are computationally demanding and aim to counter specific kinds of adversarial data manipulation. In this work, we overcome these limitations by proposing a multiple classifier system capable of improving security against evasion attacks at test time by learning a decision function that more tightly encloses the legitimate samples in feature space, without significantly compromising accuracy in the absence of attack. Since we combine a set of one-class and two-class classifiers to this end, we name our approach one-and-a-half-class (1.5C) classification. Our proposal is general and it can be used to improve the security of any classifier against evasion attacks at test time, as shown by the reported experiments on spam and malware detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.