Abstract

Auditory evoked responses to a violin tone and a noise-burst stimulus were recorded from 4- to 6-year-old children in four repeated measurements over a 1-year period using magnetoencephalography (MEG). Half of the subjects participated in musical lessons throughout the year; the other half had no music lessons. Auditory evoked magnetic fields showed prominent bilateral P100m, N250m, P320m and N450m peaks. Significant change in the peak latencies of all components except P100m was observed over time. Larger P100m and N450m amplitude as well as more rapid change of N250m amplitude and latency was associated with the violin rather than the noise stimuli. Larger P100m and P320m peak amplitudes in the left hemisphere than in the right are consistent with left-lateralized cortical development in this age group. A clear musical training effect was expressed in a larger and earlier N250m peak in the left hemisphere in response to the violin sound in musically trained children compared with untrained children. This difference coincided with pronounced morphological change in a time window between 100 and 400 ms, which was observed in musically trained children in response to violin stimuli only, whereas in untrained children a similar change was present regardless of stimulus type. This transition could be related to establishing a neural network associated with sound categorization and/or involuntary attention, which can be altered by music learning experience.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.