Abstract

We present a novel approach for the estimation of one-way delays between network nodes without any time synchronization in the network. It is based on conducting multiple and simple one-way measurements among pairs of nodes, and estimating the one-way delays by optimizing the value of a global objective function that is affected by the overall network topology and not just by individual measurements. We examine two objective functions. The first intuitive choice is the least square error (LSE). Using a novel concept of delay-induced link probabilities, we develop a second objective function that is based on the maximum-entropy (ME) principle. Extensive numerical experiments show that both functions considerably outperform the common method of halving the round-trip delays. They also show that ME outperforms the commonly used LSE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.