Abstract

We study deterministic one-way communication complexity of functions with Hankel communication matrices. In this paper some structural properties of such matrices are established and applied to the one-way two-party communication complexity of symmetric Boolean functions. It is shown that the number of required communication bits does not depend on the communication direction, provided that neither direction needs maximum complexity. Moreover, in order to obtain an optimal protocol, it is in any case sufficient to consider only the communication direction from the party with the shorter input to the other party. These facts do not hold for arbitrary Boolean functions in general. Next, gaps between one-way and two-way communication complexity for symmetric Boolean functions are discussed. Finally, we give some generalizations to the case of multiple parties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.