Abstract
Abstract Convolutional Neural Networks (CNN) have been widely utilized for Automatic Target Recognition (ATR) in Synthetic Aperture Radar (SAR) images. However, a large number of parameters and a huge training data requirements limit CNN’s use in SAR ATR. While previous works have primarily focused on model compression and structural modification of CNN, this paper employs the One-Vs-All (OVA) technique on CNN to address these issues. OVA-CNN comprises several Binary classifying CNNs (BCNNs) that act as an expert in correctly recognizing a single target. The BCNN that predicts the highest probability for a given target determines the class to which the target belongs. The evaluation of the model using various metrics on the Moving and Stationary Target Acquisition and Recognition (MSTAR) benchmark dataset illustrates that the OVA-CNN has fewer weight parameters and training sample requirements while exhibiting a high recognition rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.