Abstract

One-, two-, and three-photon absorption induced fluorescence intensities of a novel nonlinear optical chromophore have been measured by using a tunable femtosecond pulsed laser as the excitation. Four resonance peaks are observed as the excitation wavelength is tuned from 600 to 2000 nm. These peaks correspond to the one-, two- and three-photon fluorescence resonance. Except for intensity difference, the lifetime and the fluorescence spectrum are found to be the same for the one-, two-, or three-photon resonance, hence suggesting that the same excited energy level is involved in emitting the fluorescence intensity. A three-level model is developed to account for the incident excitation laser intensity dependence of the one-photon and multiphoton fluorescence intensity. The model allows the multiphoton absorption cross sections to be extracted; it can also account for the deviation observed in the linear, square, and cubic intensity dependence of the one-, two-, and three-photon fluorescence intensity, respectively. To determine the absorption cross sections, the present method does not require the fluorescence quantum efficiency data, needed in the low intensity technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.