Abstract

We call a piecewise linear mapping from a planar triangulation to the plane a convex combination mapping if the image of every interior vertex is a convex combination of the images of its neighbouring vertices. Such mappings satisfy a discrete maximum principle and we show that they are one-to-one if they map the boundary of the triangulation homeomorphically to a convex polygon. This result can be viewed as a discrete version of the Radó-Kneser-Choquet theorem for harmonic mappings, but is also closely related to Tutte’s theorem on barycentric mappings of planar graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.