Abstract

The nonlinear modal coupling between the vibration modes of an arch-shaped microstructure is an interesting phenomenon, which may have desirable features for numerous applications, such as vibration-based energy harvesters. This work presents an investigation into the potential nonlinear internal resonances of a microelectromechanical systems (MEMS) arch when excited by static (DC) and dynamic (AC) electric forces. The influences of initial rise and midplane stretching are considered. The cases of one-to-one and three-to-one internal resonances are studied using the method of multiple scales and the direct attack of the partial differential equation of motion. It is shown that for certain initial rises, it is possible to activate a three-to-one internal resonance between the first and third symmetric modes. Also, using an antisymmetric half-electrode actuation, a one-to-one internal resonance between the first symmetric and the second antisymmetric modes is demonstrated. These results can shed light on such interactions that are commonly found on micro and nanostructures, such as carbon nanotubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.