Abstract

This article examines a particle swarm collaborative model-free learning algorithm for approximating equilibria of stochastic games with continuous action spaces. The results support the argument that a simple learning algorithm which consists to explore the continuous action set by means of multi-population of particles can provide a satisfactory solution. A collaborative learning between the particles of the same player takes place during the interactions of the game, in which the players and the particles have no direct knowledge of the payoff model. Each particle is allowed to observe her own payoff and has only one-step memory. The existing results linking the outcomes to stationary satisfactory set do not apply to this situation because of continuous action space and non-convex local response. We provide a different approach to stochastic differential inclusion for arbitrary number of agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.