Abstract
Abstract Well-distributed, nano-sized and amorphous or crystalized NaTi2(PO4)3 (NTP) coating layer with high ionic conductivity is successfully introduced onto the surface of LiNi0.6Co0.2Mn0.2O2 (LNCM) particles by a simple and effective mechanical activation method followed by adjusting the reheating temperature appropriately. The promoting influence of NTP coating on the structure stability, cycle life and high rate capability under elevated cut-off voltage has been investigated in-depth. Particularly for the crystalized NTP-coated LNCM, the main reason for the enhanced electrochemical performance can be attributed to the NTP layer with rhombohedral structure providing convenient and low activation barrier diffusion pathways for Li+ ions to insert/extract the interface of electrode/electrolyte. Besides, the NTP-coated layer with stable structure can effectively inhibit the surface side reaction during the long charge/discharge process under high cut-off voltage, which will reduce the harmful insulative by-products. It's worth mentioning that the cyclic stability of crystalized NTP-coated LNCM between 3.0 and 4.6 V is also improved significantly even under the rigorous test environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.