Abstract
To achieve the objective of “waste control by waste”, in this study, a green aerogel adsorbent comprised of pomelo-peel cellulose and sodium alginate (PCC/SA) was prepared through dual-network crosslinking. The resulting 3D hierarchical porous structured PCC/SA aerogel exhibited good structural stability, and kept the morphological integrity during 10 days in a wide pH range (2–10), suggesting its potential for recycling in diverse complex environments. Besides, the superior adsorption capacities for methylene blue (MB) and Cu(II) were observed, with the qm values and adsorption equilibrium times were recorded to be 1299.59 mg/g (300 min) and 287.55 mg/g (120 min), correspondingly. Furthermore, the favorable reusability of the PCC/SA aerogel was also demonstrated, with the removal efficiency for MB remaining almost unchanged (about 94 %) after 10 adsorption-desorption cycles, while there was a slight reduction for Cu(II) from 85.28 % to 72.47 %. XPS and FTIR analysis revealed that electrostatic attraction, hydrogen bonding, cation exchange and coordination were the major adsorption mechanisms. Importantly, the PCC/SA aerogel can be naturally degraded in soil within 10 weeks. Therefore, the as-prepared aerogel bead derived from pomelo peel shows great promise as an adsorbent for wastewater treatment containing dye and heavy metal ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.