Abstract

Increasing working voltage is a promising way to increase the energy density of lithium-ion batteries. Cycling and rate performance deteriorated due to excessive electrolyte decomposition and uncontrolled formation of a cathode-electrolyte interface (CEI) layer at a high voltage. A new concept is proposed to construct a high-voltage-stable electrode-electrolyte interface. An elastomeric poly(dimethyl siloxane) (PDMS) binder is incorporated into the electrode to modify the LiNi0.5Co0.2Mn0.3O2 (NCM 523) particle surface via an in situ cross-linking reaction between hydroxy-terminated PDMS and methyl trimethoxy silane promoted by moisture at ambient conditions (MPDMS). Improved electrochemical performance is achieved with the MPDMS binder in terms of reversible capacity (201 vs 185 mAh·g-1 at 0.2C), capacity retention (80 vs 68%, after 300 cycles at 1C), and rate performance (55.6% increase at 5C), as demonstrated by the NCM 523||Li half-cell. The NCM 523||graphite full-cell also shows improved performance at 4.6 V (147 vs 128 mAh·g-1, 82 vs 76%, after 200 cycles at 1C). The mechanism studies indicate that MPDMS exerts multiple effects, including cathode surface passivation, solvation structure tuning, electrolyte uptake enhancement, and mechanical stress relief. This work provides an inspiring route to realize high-voltage application of lithium-ion battery technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.