Abstract

AbstractA simplified wet‐spinning process for the production of continuous poly (3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) fibers is reported. Conductivity enhancement of PEDOT:PSS fibers up to 223 S cm−1 has been demonstrated when these fibers are exposed to ethylene glycol as a post‐synthesis processing step. In a new spinning approach it is shown that by employing a spinning formulation consisting of an aqueous blend of PEDOT:PSS and poly(ethlylene glycol), the need for post‐spinning treatment with ethylene glycol is eliminated. With this approach, 30‐fold conductivity enhancements from 9 to 264 S cm−1 are achieved with respect to an untreated fiber. This one‐step approach also demonstrates a significant enhancement in the redox properties of the fibers. These improvements are attributed to an improved molecular ordering of the PEDOT chains in the direction of the fiber axis and the consequential enrichment of linear (or expanded‐coil like) conformation to preference bipolaronic electronic structures as evidenced by Raman spectroscopy, solid‐state electron spin resonance (ESR) and in situ electrochemical ESR studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.