Abstract

The ocean reserves nearly four billion tons of uranium, providing an inexhaustible supply of nuclear energy if the limits of ultralow U(VI) concentration (3.3 µg·L−1) are addressed. Membrane technology is promising to make this happen by simultaneous U(VI) concentration and extraction. Herein, we report a pioneering adsorption-pervaporation membrane for efficient enrichment and capture of U(VI) along with clean water production. A bifunctional poly(dopamine–ethylenediamine) and graphene oxide 2D scaffold membrane was developed and further crosslinked by glutaraldehyde, capable of recovering over 70% U(VI) and water from simulated seawater brine, which validates the feasibility of one-step water recovery, brine concentration, and uranium extraction from seawater brine. Moreover, compared with other membranes and adsorbents, this membrane exhibits fast pervaporation desalination (flux: 153.3 kg·m−2·h−1, rejection: >99.99%) and excellent uranium capture properties of 228.6 mg·m−2 benefiting from plentiful functional groups provided by embedded poly(dopamine–ethylenediamine). This study aims to provide a strategy for recovering critical elements from the ocean.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.