Abstract
Nanocrystalline single phase cubic Ti0.9Al0.1B has been prepared at room temperature in a minimum duration of 4h by mechanical alloying the stoichiometric mixture of Ti, Al and B powders in a high energy planetary ball mill under argon atmosphere. The Rietveld's structure refinement of X-ray diffraction data reveals that cubic Ti–Al–B phase is initiated just after 1h of milling and at the same time α-Ti (hcp) phase partially transforms to metastable β-Ti (bcc) phase. In the course of milling, ordered Ti–Al–B lattice gradually transforms to a distorted state and the degree of distortion increases with milling time up to 15h. The formation of cubic Ti0.9Al0.1B is also confirmed from the selected area electron diffraction (SAED) pattern. Microstructure characterization by high resolution transmission electron microscopy (HRTEM) reveals that Ti–Al–B nanoparticles are isotropic in nature with average particle size ~4.5nm and is in good agreement with the value obtained from the Rietveld analysis of X-ray diffraction data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.