Abstract

Dual-state emission luminogens (DSEgens), as a new type of luminescent materials that can effectively emit light in solution and solid state, have attracted tremendous attention due to their potential application in chemical sensing, biological imaging, organic electronic devices, etc. In this study, two new rofecoxib derivatives ROIN and ROIN-B have been synthesized, and their photophysical properties are fully investigated by experimental studies and theoretical calculations. The key intermediate ROIN, resulting from one-step conjugation of rofecoxib with an indole unit, shows the classical aggregation-caused quenching (ACQ) effect. Meanwhile, by introducing a tert-butoxycarbonyl (Boc) group on the basis of ROIN without enlarging the π conjugation system, ROIN-B was successfully developed with an obvious DSE property. In addition, both fluorescent behaviors and their transformation from ACQ to DSE were elucidated clearly by going through the analysis of their single X-ray data. Moreover, the target ROIN-B, as a new DSEgens, also displays reversible mechanofluorochromism and lipid droplet-specific imaging ability in HeLa cells. Taken together, this work proposes a precise molecular design strategy to afford a new DSEgens, which may provide guidance for the future exploration of new DSEgens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.