Abstract

Diffraction of photoelectrons emitted from the core 1s and valence band of monolayer and bilayer graphene is studied within the one-step theory of photoemission. The energy-dependent angular distribution of the photoelectrons is compared to the simulated electron reflection pattern of a low-energy electron diffraction experiment in the kinetic energy range up to about 55 eV, and the implications for the structure determination are discussed. Constant energy contours due to scattering resonances are well visible in photoelectron diffraction, and their experimental shape is well reproduced. The example of the bilayer graphene is used to reveal the effect of the scattering by the subsurface layer. The photoemission and LEED patterns are shown to contain essentially the same information about the long-range order. The diffraction patterns of C 1s and valence band photoelectrons bear similar anisotropy and are equally suitable for diffraction analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.