Abstract

A uniform anode material composed of ultrasmall tin oxide (SnO2) nanoparticles with an excellent lithium-ion (Li-ion) storage performance is obtained for the first time through one step UV curing technology. The diameter of ∼3 nm-sized SnO2 particles is uniformly dispersed in the styrylpyridinium (SbQ) polymer because of its photo-cross-linking property. The in situ cross-linking of SbQ polymer not only assist synthesis of uniform ultrasmall SnO2, but act as a strong adhesion binder on SnO2 nanoparticles, thereby effectively accommodating the volume expansion of SnO2 anodes during cycling process. The uniform electrode exhibits substantially higher specific capacity and longer cycling stability compared with the SnO2 nanoparticles electrodes treated by traditional PVDF-mixing method. A stable specific capacity of 572.5 mA h g-1 of the SnO2 electrode derived from UV curing technology is obtained at a current density of 0.2 C (156.2 mA g-1) after 150 cycles. Even at high rate of 5 C (3905 mA g-1), the electrode still demonstrates specific capacity of 440.2 mA h g-1. Therefore, the scalable and low-cost synthetic approach described herein can readily be extended to other nanomaterials electrodes to improve their lithium-storage properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.