Abstract
Graphene hybrid materials have been attracting a great deal of attention due to their superior properties. Nevertheless, problems such as expensive and complicated production processes have limited their application to industrial fields. Here, we introduce a one-step synthesis of titanium carbide (TiC) nanoparticles on multilayer graphene nanosheet (TiC/multilayer graphene) composites using thermal plasma. Although there are three types of titanium alkoxides (titanium ethoxide, titanium isopropoxide and titanium n-butoxide), the TiC/multilayer graphene was synthesized from only titanium isopropoxide. The injection temperature of the precursor was varied to investigate the effects of the precursor concentration in the plasma region. A TiC/multilayer graphene hybrid material with crystalline TiC nanoparticles below 50 nm on graphene nanosheets was observed. The number of graphene nanosheet layers varied from one to over 10 according to the injection temperature. When titanium ethoxide and titanium butoxide were injected, TiC with amorphous carbon and graphite were synthesized. The formation of graphene is considered to be affected by the structure of the carbon chain in the precursors and the concentration in the plasma region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.