Abstract

Sc2W3O12 is an important host matrix for rare-earth doped luminescence. However, the conventional method to prepare the material is solid-state reaction, which results into coarse and irregular morphologies. In this work, Eu3+ doped Sc2W3O12 phosphors with high crystallinity and pure phase were successfully synthesized via one-step hydrothermal method. It was found that the crystalline phase changed from Sc2W3O12 phase to Na4Sc2(WO4)5 phase when the molar ratio between Sc(NO3)3 and Na2WO4 decreased. The temperature-dependent X-ray diffraction analysis was performed to prove the negative thermal expansion property of Sc2W3O12. A systematic study on the effect of reaction time, temperature and Eu3+ doping concentration was explored. It was also found that the as-prepared samples displayed tunable emission colors, ranging from blueish white to orange red. Particularly, the white light emission with the chromaticity coordinate of (0.3395, 0.3289) can be realized in Sc2W3O12: 5% Eu3+. What's more, the photoluminescence properties of the samples were investigated under different ambient temperatures between 97 and 280 K. The result clearly showed energy transfer between Eu3+ and WO42−. The above results suggested that Sc2W3O12:Eu3+ can be excellent candidate for solid-state lasing, panel display and WLEDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.