Abstract

A novel, label-free and inherent electroactive redox immunosensor for ultrasensitive detection of carcinoembryonic antigen (CEA) was proposed based on gold nanoparticles (AuNPs) and potassium ferricyanide-doped polyaniline (FC-PANI) nanoparticles. FC-PANI composite was synthesized via oxidative polymerization of aniline, using potassium ferricyanide (K3[Fe(CN)6]) as both oxidant and dopant. FC-PANI acting as the signal indicator was first fixed on a gold electrode (GE) to be the signal layer. Subsequently, the negatively charged AuNPs could be adsorbed on the positively charged FC-PANI modified GE surface by electrostatic adsorption, and then to immobilize CEA antibody (anti-CEA) for the assay of CEA. The CEA concentration was measured through the decrease of amperometric signals in the corresponding specific binding of antigen and antibody. The wide linear range of the immunosensor was from 1.0pgmL−1 to 500.0ng mL−1 with a low detection limit of 0.1pgmL−1(S/N=3). The proposed method would have a potential application in clinical immunoassays with the properties of facile procedure, stability, high sensitivity and selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.