Abstract

O-doped g-C3N4 (denoted as x-OCN, where x is the volume of 30% H2O2 for a given amount of urea) materials were prepared by calcining dried the mixtures of urea impregnated with H2O2 at 550 °C. The characterization shows that the x-OCN materials are formed by replacing N in g-C3N4 by O atoms, which is further supported by density functional theory calculations. The rhodamine B photodegradation performance on the x-OCN materials is higher than the pure g-C3N4. Among the x-OCN samples, 40-OCN shows the strongest photocatalytic activity, which could be attributed to the largest content of doped-O in the matrix of g-C3N4, leading to a reduced bandgap energy and a lower recombination rate of photogenerated electrons and holes, therefore enhancing the photocatalytic performance. The mechanism for the photocatalytic degradation of RhB was proposed based on the investigation on the role of active species and the pathway of RhB degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call