Abstract
Dispersed pure phases of Ni2P and Co2P nanoparticles with high surface areas were prepared from one-step decomposition of hexamethylenetetramine (HMT)-containing precursors under an inert atmosphere. The solids before and after decomposition and the evolution of gas during the processes were studied by various characterization techniques. The HMT precursors underwent three decomposition stages: low-, moderate- and high-temperature stages. The formation of phosphides was observed at the high-temperature decomposition stage, in which Ni (Co) and P species were reduced by the decomposition products (C, H2 and CH4) of HMT to yield Ni (Co) phosphides, with the release of COx and H2O. Note that in contrast to the traditional H2-temperature-programmed reduction (H2-TPR) method, the HMT-based method produced CO as a major gas product rather than H2O. The better dispersions and higher surface areas of the as-prepared phosphide nanoparticles were achieved probably due to the mitigation of hydrothermal sintering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.