Abstract

Advances in nanotheranostics have promoted the development of precision medicine, which has great potential as a weapon for clinical diagnosis and therapy of tumors. However, the combination of three functional principle components (imaging probes, therapeutic agents and surface coating) in traditional theranostic system is difficult to be achieved in only one step, while undergoing multiple synthesis procedures, time-consuming process and unknown toxicity. Herein, we fabricated iodinated polyaniline (LC@I-PANi) nanoparticles via a facile one-step synthesis approach integrating chemical oxidative polymerization and iodine-doping process for computed tomography (CT) imaging and photoacoustic (PA) imaging-guided photothermal therapy (PTT). Iodic acid (HIO3) as an oxidant induces chemical oxidation polymerization of aniline monomers. Meanwhile, iodine is incorporated into the polyaniline structural units in the process of polymerization to obtain LC@I-PANi nanoparticles. Moreover, thel-cysteine (LC) has an effect on diameter of LC@I-PANi nanoparticles, which enables nanoparticles have size-controlled spherical morphology and good colloidal stability. The hemolysis assay and cytotoxicity assessment verified the good biocompatibility of LC@I-PANi. Moreover, our LC@I-PANi nanoparticles could not only exhibit appealing PTT efficiency, but also achieve excellent CT/PA dual-mode imaging effect. The histological evaluations suggested the negligible toxicity of LC@I-PANi in vivo. This is the first time to our knowledge that multifunctional LC@I-PANi nanoparticles were prepared by an ingenious one-step method. This work not only highlights a one-step strategy that simplified the complex synthesis of LC@I-PANi nanoparticles, but also provides insight for further biomedical application of “all-in-one” theranostic agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.