Abstract

A method for the synthesis of high quality indium-doped zinc oxide (In-doped ZnO) nanocrystals was developed using a one-step ester elimination reaction based on alcoholysis of metal carboxylate salts. The resulting nearly monodisperse nanocrystals are well-crystallized with typically crystal structure identical to that of wurtzite type of ZnO. Structural, optical, and elemental analyses on the products indicate the incorporation of indium into the host ZnO lattices. The individual nanocrystals with cubic structures were observed in the 5% In–ZnO reaction, due to the relatively high reactivity of indium precursors. Our study would provide further insights for the growth of doped oxide nanocrystals, and deepen the understanding of doping process in colloidal nanocrystal syntheses.

Highlights

  • Transparent conductive oxides (TCOs) are impurity doped metal oxides, such as indium oxide (In2O3), zinc oxide (ZnO), and tin oxide (SnO2), which exhibit excellent properties of controllable low resistivity and high transparency in the visible region [1]

  • We suggest that a higher reactivity of the indium precursor, In(St)3, than that of the zinc precursor, Zn(St)2 accounts for the formation of nanocrystals with cubic structures in the products from the 5% In–ZnO reactions

  • In-doped ZnO nanocrystals with high crystallinity and relatively narrow size distribution have been synthesized through a one-step reaction based on alcoholysis of metal carboxylate salts

Read more

Summary

Introduction

Transparent conductive oxides (TCOs) are impurity doped metal oxides, such as indium oxide (In2O3), zinc oxide (ZnO), and tin oxide (SnO2), which exhibit excellent properties of controllable low resistivity and high transparency in the visible region [1]. Abstract A method for the synthesis of high quality indium-doped zinc oxide (In-doped ZnO) nanocrystals was developed using a one-step ester elimination reaction based on alcoholysis of metal carboxylate salts. The individual nanocrystals with cubic structures were observed in the 5% In–ZnO reaction, due to the relatively high reactivity of indium precursors.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.