Abstract

The one-step synthesis method of nitrogen doped microporous carbon monoliths derived from biomass with high-efficiency is developed using a novel ammonia (NH3)-assisted activation process, where NH3 serves as both activating agent and nitrogen source. Both pore forming and nitrogen doping simultaneously proceed during the process, obviously superior to conventional chemical activation. The as-prepared nitrogen-doped active carbons exhibit rich micropores with high surface area and high nitrogen content. Synergetic effects of its high surface area, microporous structure and high nitrogen content, especially rich nitrogen-containing groups for effective CO2 capture (i.e., phenyl amine and pyridine-nitrogen) lead to superior CO2/N2 selectivity up to 82, which is the highest among known nanoporous carbons. In addition, the resulting nitrogen-doped active carbons can be easily regenerated under mild conditions. Considering the outstanding CO2 capture performance, low production cost, simple synthesis procedure and easy scalability, the resulting nitrogen-doped microporous carbon monoliths are promising candidates for selective capture of CO2 in industrial applications.

Highlights

  • The one-step synthesis method of nitrogen doped microporous carbon monoliths derived from biomass with high-efficiency is developed using a novel ammonia (NH3)-assisted activation process, where NH3 serves as both activating agent and nitrogen source

  • Various materials with selective CO2 capture capability have been prepared in laboratory scale; large-scale, low-cost and facile synthesis of materials for effective CO2 capture, remains challenging

  • We report a novel synthesis of N-doped microporous carbon monoliths derived from biomass using an ammonia gas (NH3)-assisted activation process, where NH3 serves as both the activating agent and the N source

Read more

Summary

Introduction

The one-step synthesis method of nitrogen doped microporous carbon monoliths derived from biomass with high-efficiency is developed using a novel ammonia (NH3)-assisted activation process, where NH3 serves as both activating agent and nitrogen source. Both pore forming and nitrogen doping simultaneously proceed during the process, obviously superior to conventional chemical activation. We report a novel synthesis of N-doped microporous carbon monoliths derived from biomass (corncob) using an ammonia gas (NH3)-assisted activation process, where NH3 serves as both the activating agent and the N source. The resulting N-doped microporous carbon monoliths exhibit excellent selective CO2 capture performance with excellent CO2 selectivity over N2 of 82, which is the highest among reported nanoporous carbons

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.