Abstract

A self-assembled magnetite core/zirconia shell (Fe3O4@ZrO2) nanoparticle material was fabricated by the one-step co-precipitation method to capture phosphate from water. Fe3O4@ZrO2 with different Fe/Zr molar ratios were obtained and characterized by XRD, TEM, BET surface area and magnetization. It was shown that, with the decreasing of Fe/Zr molar ratio, magnetization decreased whereas surface area and adsorption capacity of phosphate increased. Fe3O4@ZrO2 with the ratio of higher than 4:1 had satisfactory magnetization property (>23.65emu/g), enabling rapid magnetic separation from water and recycle of the spent adsorbent. The Langmuir adsorption capacity of Fe3O4@ZrO2 reached 27.93–69.44mg/g, and the adsorption was fast (90% of phosphate removal within 20min). The adsorption decreases with increasing pH, and higher ionic strength caused slight increase in adsorption at pH>about 5.5. The presence of chloride, nitrate and sulfate anions did not bring about significant changes in adsorption. As a result, Fe3O4@ZrO2 performed well to remove phosphate from real wastewater. These results were interpreted by the ligand exchange mechanism, i.e., the direct coordination of phosphate onto zirconium by replacement of hydroxyl groups. Results suggested that phosphate reacted mainly with surface hydroxyl groups but diffusion into interior of zirconia phase also contributed to adsorption. The adsorbed phosphate could be desorbed with a NaOH treatment and the regenerated Fe3O4@ZrO2 could be repeatedly used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.