Abstract

The magnetic nitrogen-doped carbon nanotube is prepared by one-pot using waste plastics as feedstock in the existence of the urea and Fe(NO3)3 for Cr(Ⅵ) removal form wastewater. The characterization analysis indicates that the nitrogen is successfully doped on the magnetic nitrogen-doped carbon nanotube with specific surface area of the 158.71 m2/g and saturation magnetization of the 36.47 emu g−1. The existence of the nitrogen group and Fe3C contributes to Cr(Ⅵ) removal by complexation and reduction with adsorption capacity of the 27.47 mg g−1. The adsorption data is fitting well with the Pseudo-second order model, demonstrating chemisorption of Cr(Ⅵ). The Cr(Ⅵ) removal mechanism analysis indicates that Fe0, Fe2+, H*, oxygen-containing group and nitrogen-containing group are crucial to Cr(Ⅵ) removal. The key mechanism of the enhanced Cr (VI) removal is the reductive capacity by dissolved Fe2+, which accounts for 23.6 % of the overall Cr(VI) removal. The magnetic nitrogen-doped carbon nanotube is prepared from waste plastic for Cr (VI) removal from wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.