Abstract
Here in, we describe an ultrafast, single-step microwave irradiation route (MW) to prepare graphene supported Pt nanoparticles, during which the small Pt nanoparticles are distributed uniformly on a reduced graphene oxide surface. This route provides evident advantages namely low cost, easiness, low time consuming and high yield in comparison to actual chemical methods to develop efficient Pt/rGO catalyst with Pt content close to state-of-the-art commercial composition. The structure and composition of prepared samples have been studied by specific techniques, while the electrocatalytic stability has been studied using ex-situ and in-situ measurements. High performance and electrochemically stable catalyst for PEM fuel cells was developed using the sample with highest loading and good dispersion. The fabricated Pt-rGO-based MEA was investigated for durability under fuel starvation in comparison with commercial Pt/C-based MEA. The electrocatalytic activity was investigated and the electrochemical response revealed the higher stability during accelerated degradation test under fuel starvation in comparison with commercial Pt/C. This study promotes the applicability of described preparation method to noble or transition metal nanoparticles embedded on graphene-based materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.