Abstract

Direct and efficient enzymatic synthesis of long-chain cellulose from cellobiose in its original form was successfully achieved via the combination of a surfactant-enveloped enzyme (SEE) and a protic acid in an aprotic organic solvent, lithium chloride/N,N-dimethylacetamide system. The SEE biocatalyst was prepared by protecting the surface of cellulase with the nonionic surfactant dioleyl-N-D-glucona-L-glutamate for keeping its enzymatic activity in nonaqueous media. Fourier transform infrared and nuclear magnetic resonance analyses elucidated the successful synthesis of cellulose, β-1,4-linked D-glucopyranose polymer, through the reverse hydrolysis of cellobiose. By using protic acid cocatalysts, a degree of polymerization of as-synthesized cellulose reached more than 120, in a ca. 26% conversion, which was 5 times higher than that obtained in an acid-free SEE system. A novel-concept biocatalysis, i.e., a protic acid-assisted SEE-mediated reaction, enables a facile, one-step chain elongation of carbohydrates without any activation via multistep organic chemistry, and can provide potential applications in the functional design of glycomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call