Abstract

A new kind of cathode materials, Li3V2(PO4)3/C nanocomposites, has been prepared via one-step solid-state reaction using ultra low-cost asphalt as both reduction agents and carbon sources. The asphalt is contained 60.37% of fixed carbon and 0.18% of other impurity.It is purchased from Zhen jiang Xin Guang Metallurgical Subsidiary Material Plant. Structural analysis shows that the obtained Li3V2(PO4)3/C nanocomposites contain abundant Li3V2(PO4)3 nanorods and micro/nano particles encapsulate with carbon shells. The Li3V2(PO4)3/C nanocomposites achieve enhanced dischargeability, reversibility, and cycleability. Electrochemical tests show that the Li3V2(PO4)3/C nanocomposite has initial discharge capacities of 170 mAhg-1 at 0.1C in the voltage range of 3.0 to 4.8 V. The improved electrochemical properties of the Li3V2(PO4)3/C nanocomposites are attributed to the presence of Li3V2(PO4)3/C nanorods and the electronically conductive carbon shell. This one-step solid state reaction using low-cost asphalt as carbon sources is feasible for the preparation of the Li3V2(PO4)3/C nanocomposites which can offer favorable properties for commercial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call