Abstract
Ultrahigh molecular weight (>106 g/mol) amphiphilic block copolymers were synthesized using one-step surfactant-free heterogeneous radical polymerization (SFHRP). The polymerization initially involves formation of water-soluble homopolymer blocks, followed by copolymerization of a hydrophobic monomer, resulting in ultrahigh molecular weight block copolymers. Facilitating heterogeneous reaction conditions and continuous supply of an initiator controls the process. Using this synthetic approach, we synthesized amphiphilic block copolymers of poly(2-(N,N-dimethylamino)ethyl methacrylate)-block-poly(n-butyl acrylate) (pDMAEMA-b-pnBA), pDMAEMA-block-p(tert-butyl acrylate) (pDMAEMA-b-tBA), and pDMAEMA-block-polystyrene (pDMAEMA-b-pSt) with molecular weights of 1.98 × 106, 1.18 × 106, and 0.91 × 106 g/mol, respectively. These ultrahigh molecular weight block copolymers can self-assemble in nonpolar solvents to form thermochromic inverse polymeric micelles as well as other shapes and exhibit many potential applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.