Abstract

N-doping is one of the most promising strategies to improve the adsorption capacity and selectivity of carbon adsorbents. Herein, synthesis, characterization and dye adsorption of a novel N-doped microporous biochar derived from direct annealing of crop straws under NH3 is presented. The resultant products exhibit high microporosity (71.5%), atomic percentage of nitrogen (8.81%), and adsorption capacity to dyes, which is about 15–20 times higher than that of original biochar. Specifically, for the sample NBC800-3 pyrolyzed at 800 °C in NH3 for 3 h, its adsorption for acid orange 7 (AO7, anionic) and methyl blue (MB, cationic) is up to 292 mg g−1 and 436 mg g−1, respectively, which is among the highest ever reported for carbonaceous adsorbents. The influences of N-doping and porous structure on dye adsorption of the synthesized carbons are also discussed, where electrostatic attraction, π–π electron donor-accepter interaction, and Lewis acid-base interaction mainly contribute to AO7 adsorption, and surface area (especially pore-filling) dominates MB adsorption. The N-doped biochar can be effectively regenerated and reused through direct combustion and desorption approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call