Abstract

Mercury (Hg) pollution poses a significant environmental challenge. One promising method for its removal is the sorption of mercuric ions using biochar. FeS-doped biochar (FBC) exhibits effective mercury adsorption, however may release excess iron into the surrounding water. To address this issue, a novel magnetic pyrrhotite/magnetite-doped biochar with a core-shell structure was synthesized for the adsorption of 2-valent mercury (Hg(II)). The proposed synthesis process involved the use of algae powder and ferric sulfate in a one-step method. By varying the ratio of ferric sulfate and alga powder (within the range of 0.18 - 2.5) had a notable impact on the composition of FBC. As the ferric sulfate content increased, the FBC exhibited a higher concentration of oxygen-containing groups. To assess the adsorption capacity, Langmuir and Freundlich adsorption models were applied to the experimental data. The most effective adsorption was achieved with FBC-4, reaching a maximum capacity (Qm) of 95.51 mg/g. In particular, at low Hg(II) concentrations, FBC-5 demonstrated the ability to reduce Hg(II) concentrations to less than 0.05 mg/L within 30 min. Additionally, the stability of FBC was confirmed within the pH range of 3.8 - 7.2. The study also introduced a model to analyze the adsorption preference for different Hg(II) species. Calomel was identified in the mercury saturated FBC, whereas the core-shell structure exhibited excellent conductivity, which most likely contributed to the minimal release of iron. In summary, this research presents a novel and promising method for synthesizing core-shell structured biochar and provides a novel approach to explore the adsorption contribution of different metal species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call