Abstract

2-Oxazolidinones are saturated heterocyclic compounds, which are highly attractive targets in modern drug design. Herein, we describe a new, single-step approach to 3,4-disubstituted 2-oxazolidinones by aza-Michael addition using CO2 as a carbonyl source and 1,1,3,3-tetramethylguanidine (TMG) as a catalyst. The modular reaction, which occurs between a γ-brominated Michael acceptor, CO2 and an arylamine, aliphatic amine or phenylhydrazine, is performed under mild conditions. The regiospecific reaction displays good yields (av. 75 %) and excellent functional-group compatibility. In addition, late-stage functionalization of drug and drug-like molecules is demonstrated. The experimental results suggest a mechanism consisting of several elementary steps: TMG-assisted carboxylation of aniline; generation of an O-alkyl carbamate; and the final ring-forming step through an intramolecular aza-Michael addition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call