Abstract

A one-step microwave irradiation route was used to synthesize undoped and Zn-doped SnO2 nanoparticles for the first time. The morphologies, structures and optical properties of the as-prepared samples were characterized by X-ray powder diffraction, field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy, UV–Vis spectra and photoluminescence spectra analysis. The results clearly revealed that both the pure and doped samples had a tetragonal rutile-type structure and a space group of P42/mnm have formed directly during the microwave irradiation process. FESEM studies illustrate that both the pristine and Zn-doped SnO2 form in spherical-shaped morphology with an average diameter around 41–32 nm, which is in good agreement with the average crystallite sizes calculated by Scherrer’s formula. Optical studies reveal that both pristine and Zn-doped SnO2 direct transitions occur with the bandgap energies in the range of 3.43–3.26 eV. The photocatalytic activities of the pure and Zn-doped SnO2 samples were evaluated by the degradation of methylene blue rhodamine B in an aqueous solution under visible light irradiation. The photocatalytic activity and reusability of Zn (10 wt%)-doped SnO2 was much higher than that of the pure SnO2. The improvement mechanism by zinc doping was also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.