Abstract
AbstractSolar‐driven reduction of nitrogen to ammonia is a promising green approach and is considered as a sustainable alternative to the Haber–Bosch process. Carbon nitride (g‐C3N4) is an ideal non‐metallic semiconductor photocatalyst for photocatalytic N2 reduction reaction (p‐NRR). In this work, we designed a simple supramolecular self‐assembly method to prepare copper‐doped porous graphitic nitride (Cu@pg‐C3N4) photocatalysts. The synergistic semiconductor and metal interactions enabled the obtained Cu@pg‐C3N4 to achieve larger specific surface area, more efficient photogenerated carrier separation, and stronger photoreduction ability. The specific surface area of Cu@pg‐C3N4 increased from 5.69 to 75.76 μmol/L, exposing more active sites compared to bulk g‐C3N4. The NH4+ production rate of the obtained Cu@pg‐C3N4 was 150.47 μmol/L, which is 20 times higher than that of the bulk carbon nitride, exhibiting excellent N2 photofixation ability. These findings highlight the significant progress that can be achieved by metal supramolecular network modification strategies in harnessing the potential of carbon nitride for photocatalytic reduction applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.