Abstract

We present the fabrication of a MoS2−xSex thin film from a co-sputtering process using MoS2 and MoSe2 commercial targets with 99.9% purity. The sputtering of the MoS2 and MoSe2 was carried out using a straight and low-cost magnetron radio frequency sputtering recipe to achieve a MoS2−xSex phase with x = 1 and sharp interface formation as confirmed by Raman spectroscopy, time-of-flight secondary ion mass spectroscopy, and cross-sectional scanning electron microscopy. The sulfur and selenium atoms prefer to distribute randomly at the octahedral geometry of molybdenum inside the MoS2−xSex thin film, indicated by a blue shift in the A1g and E1g vibrational modes at 355 cm−1 and 255 cm−1, respectively. This work is complemented by computing the thermodynamic stability of a MoS2−xSex phase whereby density functional theory up to a maximum selenium concentration of 33.33 at.% in both a Janus-like and random distribution. Although the Janus-like and the random structures are in the same metastable state, the Janus-like structure is hindered by an energy barrier below selenium concentrations of 8 at.%. This research highlights the potential of transition metal dichalcogenides in mixed phases and the need for further exploration employing low-energy, large-scale methods to improve the materials’ fabrication and target latent applications of such structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call