Abstract

Exploring efficient and robust self-supporting hydrogen evolution reaction (HER) electrodes using simple, accessible, and low-cost synthetic processes is crucial for the commercial application of water electrolysis at high current densities. Ni-based self-supporting electrodes are widely studied owing to their low cost and good catalytic performance. However, to date, the preparation of Ni-based electrodes requires multistep and complex preparation processes. In this study, a novel one-step in situ sintering method to synthesize mechanically stable and highly active Ni3 Se2 -Ni electrodes with well-controlled morphologies and structures is developed. Their excellent performance and durability can be attributed to the numerous highly active nano-Ni3 Se2 catalysts embedded on the surface of the Ni skeleton, the excellent conductivity of the interconnected conductive network, and the strong interfacial bonding between Ni3 Se2 and Ni. As a result, the Ni3 Se2 -Ni600 electrode can operate stably at 85 and 400mAcm-2 for more than 800 and 300h, respectively. Moreover, the Ni3 Se2 -Ni600 electrode displays outstanding stability for over 500h in a commercial two-electrode system. This study provides a feasible one-step synthesis method for low-cost, high-efficiency metal selenide-metal self-supporting electrodes for water electrolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.