Abstract

Convenient and time-saving one-step strategies for detecting ultralow concentrations of protein biomarkers play key roles in rapid disease diagnosis. In this study, we report a one-step detection method based on a nanofibrous sensing platform via the combination of proximity-induced DNA strand displacement (PiDSD), catalytic hairpin assembly (CHA) amplification and thioflavin T (ThT) binding. The interface behaviors on the nanofibrous membrane were studied to promote interface reaction kinetics and thermodynamics. Thrombin was used as a model biomarker, and the nanofibrous sensing platform achieved a limit of detection as low as 1.0 pM, a wide linear range of 50 pM to 5 nM, excellent specificity and good long-term stability. Compared with previous one-step thrombin detection methods, our one-step detection method is label-free, convenient and much more sensitive; it has potential applications for protein detection in point-to-care testing (POCT) and early diagnosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.