Abstract

Cu(In, Ga)Se2 (CIGS) solar cell is one of the most promising thin film solar cells. However the marketization of the CIGS solar cells is hindered by the uncertainty of the element ratios. Traditional sputtering with post selenization is one of the most widespread methods to produce the CIGS solar cells. Nevertheless, the post selenization process is the most difficult part of this technique, which could lead to element mismatch and heterogeneous. To simplify the preparing process, Cu(In, Ga)Se2 (CIGS) solar cells were prepared without post-selenization process by RF sputtering CIGS target with abundant Se element. We focus on the effect of working pressure, substrate temperature and sputtering power on the properties of CIGS solar cells. When CIGS thin film was deposited at 580 °C, 0.8 Pa working pressure and 160 W sputtering power, the solar cell showed the highest power conversion efficiency (PCE) of 5.77%, which is only 0.64% lower than that of the solar cell prepared by traditional sputtering with post selenization method, and the two kinds of solar cells have same structure without MgF2 antireflection layer, but the one-step sputtering method could greatly simplify the manufacture process of the CIGS solar cells. Our work makes clear that element Se would run off almost half during the sputtering process. And the element atomic ratios and the photovoltaic properties could be controlled by changing the sputtering parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call